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1. INTRODUCTION

Different notions of observability of hybrid sys-
tems have been given in the literature, depend-
ing on the class of systems under consideration
and on the knowledge that is assumed at the
output (see e.g. (Vidal et al., 2003), (De Santis
et al., 2003), (Babaali and Egerstedt, 2004), (De
Santis et al., 2006), (Bemporad et al., 2000)).
The design of hybrid observers was investigated
in (Balluchi et al., 2002), where a methodology
for dynamical observers of hybrid systems with
linear continuous-time dynamics was proposed. In
this approach, the complete state (discrete loca-
tion and continuous state) is reconstructed from
the knowledge of the inputs and outputs of a
hybrid plant. The synthesis of hybrid observers
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was addressed in a set of cases characterized by
the amount of information available on the current
location ranging from the case of complete knowl-
edge (i.e. the hybrid plant produces as discrete
output its current location), treated for instance
in (Alessandri and Coletta, 2001), to the case of
absence of discrete output information (i.e. the
hybrid plant produces no discrete output), con-
sidered e.g. in (Bemporad et al., 2000; Ferrari-
Trecate et al., 2000). A definition of a hybrid ob-
server for the class of autonomous piecewise affine
systems was given in (Collins and van Schup-
pen, 2004).

In (De Santis et al., 2007) the definitions and
results of (De Santis et al., 2003) were adapted
to discrete-time linear switching systems and con-
ditions were given to test observability. In the
discrete-time case, detection requires a finite, non-
zero, number of time instants, while in continuous-
time detection can be achieved in an arbitrar-
ily small amount of time. To address this issue,
∆−observability was introduced, which is based



on the reconstruction of the hybrid state at least
in some - but not necessarily all - time intervals.
In this paper, we build upon the results of (De
Santis et al., 2007) to give a definition of a hybrid
observer for discrete-time switching systems and
to propose an observer design technique.

The paper is organized as follows. In Section 2, we
introduce discrete-time linear switching systems
and the notions of ∆−observability. In Section 3,
an observer design technique is presented. Finally,
Section 4 offers some concluding remarks.

Notation. We denote by I the set of integers and
by R the set of reals. For any a, b ∈ I for which
a ≤ b we set [a, b] = {z ∈ I : a ≤ z ≤ b}. The
symbol Im (M) denotes the range space of some
matrix M . For a function f : I→ Rn, the symbol
f |[a,b] with a ≤ b denotes the vector




f(a)
f(a + 1)

...
f(b)


 ∈ Rn(b−a+1)

2. PRELIMINARY DEFINITIONS AND
RESULTS

In this section, we recall some definitions and
results for the class of discrete–time linear switch-
ing systems (De Santis et al., 2007). The inputs
of a linear switching system are a discrete and
unknown disturbance σ and a continuous control
input u. The hybrid state ξ is composed of two
components: the discrete state i belonging to a
finite set Q and the continuous state x belong-
ing to the linear space Rni , whose dimension ni

depends on i. The hybrid output has a discrete
and a continuous component as well, the former
associated to the discrete states and the latter
associated to the continuous state. The evolution
of the discrete state is governed by a Finite State
Machine; a transition e = (i, σ, h) may occur at
time t from the discrete state i to the discrete state
h, if the discrete disturbance σ occurs at time t.
The evolution of the continuous state is described
by a set of discrete–time linear dynamical systems,
controlled by the continuous input u, and whose
matrices depend on the current discrete state i.
Whenever a transition e occurs, the continuous
state x is instantly reset to a new value R(e)x,
where R(e) is a matrix depending on the transi-
tion e.

For simplicity, in this paper we assume that no
discrete signal is available at the output of the
switching system, and that a transition is defined
for each pair i, h. More formally,

Definition 1. A discrete–time linear switching sys-
tem S is a tuple(

Ξ, Θ,Rl,S, E, R
)
, (1)

where:

• Ξ =
⋃

ii∈Q {i}×Rni is the hybrid state space,
where:
◦ Q = {1, 2, . . . , N} is the discrete state

space;
◦ Rni is the continuous state space associ-

ated with the discrete state i ∈ Q;
• Θ = Σ×Rm is the hybrid input space, where:

◦ Σ = {σj , j ∈ J} is the discrete distur-
bance space, J = {1, 2, . . . , N1};
◦ Rm is the continuous control input space;

• Rl is the continuous output space;
• S is a map associating to each discrete state

i ∈ Q the linear dynamical control system:

S(i) :
{

x(t + 1) = Aix(t) + Biu(t),
y(t) = Cix(t),

where x(t) ∈ Rni is the continuous state,
u(t) ∈ Rm is the continuous control input,
y(t) ∈ Rl is the continuous output, Ai ∈
Rni×ni , Bi ∈ Rni×m and Ci ∈ Rl×ni ;

• E ⊂ Q×Σ×Q is a collection of transitions;
• R is the reset function associating to every

e = (i, σ, h) ∈ E the reset matrix R(e) ∈
Rnh×ni .

We now define the semantics of linear switch-
ing systems. We assume that the discrete distur-
bance is not available for measurement. Following
(Lygeros et al., 1999), a hybrid time basis τ is an
infinite or finite sequence of sets Ij = {t ∈ I :
tj ≤ t ≤ t′j}, with t′j > tj and t′j = tj+1; let be
card(τ) = L+1. If L < ∞, then t′L can be finite or
infinite. A hybrid time basis τ is said to be finite,
if L < ∞ and t′L < ∞ and infinite, otherwise.
Given a hybrid time basis τ , time instants t′j are
called switching times. Denote by T the set of all
hybrid time bases. The switching system temporal
evolution is defined as follows.

Definition 2. (Linear switching system execution)
An execution χ of a linear switching system S is
a collection:

(ξ0, τ, σ, u, ξ, η) ,

with hybrid initial state ξ0 ∈ Ξ, hybrid time basis
τ ∈ T , discrete disturbance σ : I → Σ, control
input u : I → Rm, hybrid state evolution ξ : I ×
I → Ξ and output evolution η : I → I → Rl. The
hybrid state evolution ξ is defined as follows:

ξ (t0, 0) = ξ0,
ξ (t, j) = (q (j) , x(t, j)) , t ∈ Ij , j = 0, ..., L,
ξ (tj+1, j + 1) = (q (j + 1) , R(ej)x(t′j , j)),

j = 0, ..., L− 1,

where q : I → Q and for any j = 0, 1, ..., L,
ej = (q (j) , σ (j) , q (j + 1)) ∈ E and x (t, j) is



the (unique) solution at time t ∈ Ij of the
dynamical system S (q (j)), with initial time tj ,
initial condition x (tj , j) and control law u. The
output evolution of S is specified by the function
η : I→ Rl, which for any j = 0, 1, ..., L is defined
as:

η (t) = Cix (tj , j) , t ∈ [tj , t′j − 1], (2)
where Ci is the output matrix associated with the
current discrete state q(j) = i.

In linear system theory, observability deals with
the reconstruction of the state, on the basis of
the knowledge of the continuous input and of
the continuous output that is accessible from the
environment. In the following, we generalize those
notions to the class of linear switching systems.

According to the definition of the function η, the
transition from one discrete state to another may
not be visible from the output.

The definition of observability we propose is based
on the existence of an input–output experiment
such that the hybrid state is reconstructed, at
least in some time intervals of the time basis.

Definition 3. Given a nonnegative integer ∆, a
linear switching system S is ∆−observable if there
exist a control input û : I → Rm and a function
ξ̂ : Rl(∆+1) × Rm∆ → 2Ξ such that

ξ̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {ξ (t, j)}

∀t ∈ [
tj + ∆, t′j − 1

]
, for any execution χ with

control input û, for any j ∈ {0, 1, ..., L} such that
t′j − tj ≥ ∆ + 1.

Moreover, S is said to be observable if there
exists a nonnegative integer ∆ such that S is
∆−observable.

The available information at some t ∈ [
tj , t

′
j − 1

]
,

given by the input û[t−∆,t−1] and the observations
η[t−∆,t], could be compatible with more than one
current hybrid state. The above definition requires
that the current hybrid state is unambiguously
determined at each time instant in the interval[
tj + ∆, t′j − 1

]
.

Since in general a system cannot be ∆−observable
with ∆ = 0, because in that case only the value
η(t) would be available at the output, we assume
∆ ≥ 1 without loss of generality.

By specializing Definition 3 to the reconstruction
of the discrete component of the hybrid state only,
the following definition is obtained.

Definition 4. Given an integer ∆ ≥ 1, a linear
switching system S is ∆−location observable for
an input function û : I → Rm, if there exists a
function q̂ : Rl(∆+1) × Rm∆ → 2Q such that

q̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {q (j)}

∀t ∈ [
tj + ∆, t′j − 1

]
, for any execution χ with

control input û, for any j ∈ {0, 1, ..., L} such that
t′j − tj ≥ ∆ + 1.

The system S is called ∆−location observable
if there exists an input function û for which it
is location observable. The system S is called
location observable if there exists ∆ for which it
is ∆−location observable.

For a given ∆, U∆ denotes the set of input
functions for which S is ∆−location observable.

A well–known assumption on the behavior of
switching systems is the existence of a dwell time
(Morse, 1996). Formally, a non negative δ ∈ I is
said to be a dwell time for a switching system S
if any execution χ = (ξ0, τ, σ, u, ξ, η) generated by
S is characterized by the following property:

t′j − tj ≥ δ,

for any [tj , t′j ] ∈ τ . If a ∆−observable switching
system S has a dwell time δ ≥ ∆ + 1, then each
execution is such that t′j − tj ≥ ∆+1, for any j ∈
{0, 1, ..., L}. Hence, in that case, the conditions of
Definition 4 hold for any execution with control
input û ∈ U∆, for any j ∈ {0, 1, ..., L}.
We can state the following:

Theorem 1. (De Santis et al., 2007)Given a linear
switching system S
i) S is location observable if and only if ∀ (i, h) ∈

J × J, ∃k ∈ I, 0 ≤ k < ni + nh : CiA
k
i Bi 6=

ChAk
hBh.

ii) S is observable if and only if it is location
observable and (Ai, Ci) is observable ∀i ∈ J .

iii) if S is ∆−location observable, then S is
∆̂−observable for any ∆̂ ≥ ∆ + maxi∈J ni.

If a system is observable, an interesting question
is how to construct a function q̂ that reconstructs
the current discrete state at least in the time inter-
val

[
tj + ∆, t′j − 1

]
. To do this, we need to use the

available information on the input and observable
output to determine all the discrete states that
are compatible with it. However, over some time
interval of length ∆, the dynamics of a node i may
be indistinguishable from the dynamics resulting
from a switching that occurred in that interval
between node i and another node h. Then, since
the switching times tj are not known a priori, it
would not be possible to understand whether the
discrete state is i or h.

This motivates the following definition:

Definition 5. Given a linear switching system S,
a function ξ̂ : Rl(∆+1) × Rm∆ → 2Ξ is called



∆−hybrid state observer of S, for an input func-
tion û, if for any execution χ with control input û,
for any j ∈ {0, 1, ..., L}, such that t′j − tj ≥ ∆+1,
the following three conditions hold:

i) ξ̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {ξ (t, j)}, ∀t ∈[

tj + ∆, t′j − 1
]
;

ii) there exists a time t̂j ∈ [tj , tj + ∆] at which
the occurrence of a switching is detected;

iii) if ξ̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {(q, x)}, for

some t ∈ [
t̂j , t

′
j − 1

]
, then ξ (t, j) = (q, x).

A function q̂ : Rl(∆+1) × Rm∆ → 2Q is called
∆−discrete state observer of S, for an input
function û, if for any execution χ with control
input û, for any j ∈ {0, 1, ..., L}, such that t′j −
tj ≥ ∆ + 1, the following three conditions hold:

i’) q̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {q (j)}, ∀t ∈[

tj + ∆, t′j − 1
]
;

ii’) there exists a time t̂j ∈ [tj , tj + ∆] at which
the occurrence of a switching is detected;

iii’) if q̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= {i}, for some

t ∈ [
t̂j , t

′
j − 1

]
, then q (j) = i.

Roughly speaking, a switching may not be in-
stantaneously identified. However, it has to be
detected at some time in the interval [tj , tj + ∆] .
Hence, the discrete observer may return an erro-
neous estimation of the current state if the current
data are compatible with the discrete state before
the switching. After detection of a switching, if the
function q̂ returns a singleton, then this singleton
has to be equal to the current discrete state.

For the existence of a ∆−hybrid state observer,
the system S has to be ∆−observable. Conversely,
∆−observability does not imply the existence of a
∆−hybrid state observer. As an example, consider
a system S with one discrete mode q, with E =
{e = (q, σ, q)}, and observable dynamic system
S(q) described by

x(t + 1) = Ax(t)
y(t) = x(t)

System S is obviously ∆−observable, for any
∆ ≥ 0. However, condition ii) may not hold for
any function ξ̂ satisfying the observability con-
dition: in fact, even if R(e) is not the identity,
it may happen that x(t′j , j) = R(e)x(t′j , j) =
x(tj+1, j + 1) and the available information does
not allow the reconstruction of the switching that
occurred at time tj . As another example, con-
sider a ∆−observable switching S with no in-
loop transitions i.e. E© = {e = (qi, σ, qh) ∈ E :
qi = qh } = ∅. Then, for a sufficiently large ∆,
conditions i) and ii) (resp. i’) and ii’)) are satisfied

while condition iii) (resp. iii’)) may not hold if
t̂j ∈ [tj , tj + ∆− 1].

3. OBSERVER DESIGN

As done in (Balluchi et al., 2002), we decompose
the design of a hybrid observer of S into two steps:
we first design the discrete state observer (i.e. the
function q̂ introduced in Definition 5) and then
the hybrid state observer. In the next subsection,
we will describe each component.

3.1 The discrete state observer

In what follows, we always assume that S is
∆s−location observable and that the input func-
tion is in U∆s . We also assume that there are no
in–loop transitions. Then, for any input function
in U∆s , if a switching occurred at some time t′

from a known state qi to an unknown state qh,
at some time t ∈ [t′, t′ + ∆s] the observations
η|[t−∆s,t] are guaranteed to indicate that a switch-
ing occurred and that the switching time was in
the interval [t−∆s, t].

∆s−location observability implies ∆- location ob-
servability, for all ∆ ≥ ∆s. An estimation of
a lower bound for ∆s was given in (De Santis
et al., 2007). This estimation does not play any
particular role here, it is therefore omitted.

For a given positive integer d, define the matri-
ces F(d,i) = diag {Ci}M(d,i) ∈ R(d+1)l×ni and
G(d,i) = diag {Ci}N(d,i) ∈ Rdl×dni , where

M(d,i) =




I
Ai

...
Ad

i




N(d,i) =




0 . . . . . . . . . . . .
Bi 0 . . . . . . . . .

AiBi Bi . . . . . . . . .
. . . . . . . . . . . . . . .

Ad−1
i Bi Ad−2

i Bi . . . AiBi Bi




and the set Fd
t{

i ∈ Q : η|[t−d,t] −G(d,i) u|[t−d,t−1] ∈ Im
(
F(d,i)

)}

(3)
which is the set of all discrete states compatible
with the observations η|[t−d,t] and the inputs
u|[t−d,t−1], under the hypothesis that no switchings
occurred in the time interval [t− d, t] from state
i to another discrete state. If this hypothesis does
not hold, then the set Fd

t can be empty.

Set
F0

t = {i ∈ Q : η(t) ∈ Im (Ci)}



Define the functions φ : I→ 2Q and f : I→ {0, 1}
as follows:

ts = 0, f (0) = 1
while ts < ∞,

φ (ts) = F0
ts

, t = ts + 1, ∆t = 1
while F∆t

t 6= ∅ and F∆t
t ⊂ F∆t−1

t−1

φ (t) = F∆t
t

f (t) = 0
t = t + 1
∆t = min {t− ts, ∆s}

endwhile
f (t) = 1
t+s = t
ts = t+s

endwhile.

Define

q̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= φ(t) (4)

The next result states that q̂ satisfies the con-
ditions of Definition 5, and the time instants t
at which f (t) = 1 are the times at which the
switchings are detected.

Proposition 1. Let the system S be ∆s−location
observable and assume there is a dwell time δ ≥
∆ + 1, ∆ = 2∆s. The function q̂ defined in 4 is a
∆−discrete state observer of S, for any u ∈ U∆s .

Proof. Since S is ∆s−location observable, at each
t ∈ [

ts + ∆s, t
′
j − 1

]
the observations η|[t−∆s,t]

and the inputs u|[t−∆s,t−1] are compatible only
with the discrete state q(j). In

[
ts, t′j − 1

]
no

switchings occurred, and since by definition φ(t)
is the set of all discrete states compatible with the
observations η|[t−∆s,t] and the inputs u|[t−∆s,t−1],
φ (t) = {q(j)}, ∀t ∈ [

ts + ∆s, t
′
j − 1

]
. Hence

φ(t) = {q(j)}, ∀t ∈ [
tj + 2∆s, t

′
j − 1

]
. We now

prove that given ts, the updated value t+s in the
definition of φ is the time instant at which from
the output it is possible to deduce that a switching
occurred in the time interval

[
t+s −∆t+s

, t+s + 1
]
,

∆t+s
= min {t+s − ts,∆s}. Suppose that ts ∈ Ij is

the time instant at which it is possible to deduce
from the output that a switching occurred in
the interval [ts −∆ts , ts]. Then, in the interval
[ts, ts + ∆s] no switching can occur, and at any
t ∈ [ts, ts + ∆s] , F∆t

t ⊂ F∆t−1
t−1 and F∆t

t 6= ∅. If
φ returns a singleton at some time in the interval
[ts, ts + ∆s], this singleton is the current discrete
state. Moreover, at any t ∈ [

ts + ∆s, t
′
j − 1

]
the

function φ returns the correct value for the state,
and it returns the same value for t ≥ t′j , until such
value is no more compatible with the available
information, in which case F∆t

t = ∅ or F∆t
t  

F∆t−1
t−1 . At this point t+s is equal to t, and we are

sure that a switching occurred in the time interval[
t+s −∆t+s

, t+s

]
. Since ts is initially set at 0 and

we can suppose that 0 is a switching time, then
by induction the result follows, i.e. t+s is the time
instant at which it is possible to deduce from the
output that a switching occurred in the interval[
t+s −∆t+s

, t+s 1
]

and q̂ satisfies the conditions of
Definition 5.

The estimation of ∆ for which it is possible to
define a discrete observer can be refined, with
respect to the estimation we have considered here,
i.e. ∆ ≥ 2∆s. Moreover, a different and more
sophisticated design for the discrete observer is
possible, for example to increase the speed of con-
vergence to the actual discrete state. The question
is then to find the best compromise between the
performance and the simplicity of the observer.

3.2 The hybrid state observer

Let q̂ be a ∆′−discrete state observer for S, with
a given ∆′, and assume a dwell time δ ≥ ∆ +
1, ∆ = max {∆′,maxi∈Q ni}. The discrete state
observer at time t gives the values of φ (t) and
f(t), as described in the previous subsection. We
assume that (Ai, Ci) is observable, ∀i ∈ Q.

The design of the hybrid state observer leverages
the information returned by the discrete state
observer, as described below.

Consider the function ξO : I→ 2Ξ, defined as:

ξO (t) =
⋃

i∈φ(t)

{i} ×Xi(t)

where, if f(t) = 1, then

Xi(t) = {x ∈ Rni : Cix = η (t)}
and if f(t) = 0 then Xi(t) is the set of continuous
states compatible with the dynamic system Si, the
input u|[t−∆,t−1] and the observations η|[t−∆,t],

∆ = min {t− ts, maxi∈Q ni}, where ts < t is the
last time instant d at which f(d) is equal to 1.
Formally,

Xi(t) = M(∆,i)Xi
0(t) + N(∆,i) u|[t−∆,t−1]

Xi
0(t) =

{
x : F(∆,i)x = η|[t−∆,t] −G(∆,i) u|[t−∆,t−1]

}

Given φ (t) and f(t), set

ξ̂
(

η|[t−∆,t] , û|[t−∆,t−1]

)
= ξO (t) (5)

We now show that ξ̂, defined in 4, satisfies the
requirements of Definition 5, for a suitable value
of ∆.

Proposition 2. Let the system S be ∆s−location
observable and assume there is a dwell time δ ≥
∆ + 1, ∆ = 2∆s + maxi∈Q ni. The function ξ̂,
defined in 5 is a ∆−discrete state observer of S,
for any u ∈ U∆s .



Proof. Consider any execution with input func-
tion u ∈ U∆s , and a time interval

[
tj , t

′
j

]
. By as-

sumption, t′j−tj ≥ ∆, for all j. Let ts be a time in[
tj , t

′
j

]
such that f(ts) = 1. Since S is ∆s−location

observable, then ts exists, is unique, and belongs
to the interval [tj , tj + ∆s]. At time tj + 2∆s, the
current discrete state has been reconstructed, at
time ts+maxi∈Q ni, which by assumption belongs
to

[
ts, t

′
j − 1

]
, the value for the current continuous

state has been reconstructed, and, if the function
ξO gives a singleton at some time in

[
ts, t

′
j − 1

]
,

such a singleton coincides with the current hybrid
state, since the dynamics are observable, and no
switchings occurred in the interval

[
ts, t

′
j − 1

]
.

The hybrid observer we proposed above simply
computes at each step all the hybrid states com-
patible with the information obtained from the
discrete observer and with the observation win-
dow. When a switching is detected, i.e. when
f(t) = 1, the size of the observation window is
reset to zero, to be sure that the measurements
that are input to the observer are produced by
the same dynamical system, so that they are not
subject to uncertainties due to a non exact recon-
struction of the switching time.

The proposed technique can be improved. For
example, we can compute at time ts an estima-
tion

⋃

i∈φ(ts)

{qi} × X̂i(ts) of the set of states com-

patible with the past observations, rather than
assuming that at ts the set of possible states
is bounded by

⋃

i∈φ(ts)

{qi} × Xi(ts), Xi(ts) =

{x ∈ Rni : Cix = η (ts)}. This refinement implies
a better estimation of the transient continuous
state evolution and possibly a faster convergence
of the hybrid observer.

4. CONCLUSIONS

In this paper, we proposed a definition of a hybrid
observer for discrete-time switching systems and
we presented an algorithm for observer design.
Future work includes the development of ”cus-
tomized” techniques according to problem-specific
requirements of speed of convergence, precision, or
simplicity. Possible extensions can be considered
by removing the assumption of observability on
the dynamical systems, and addressing detectabil-
ity of the switching system.
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